Estimation of Magnetic Field Strength near Substation Using Artificial Neural Network
نویسندگان
چکیده
In this paper, an efficient neural network based estimation technique has been studied to estimate the magnetic field strength near any power substation, and to assess the possible exposure to electromagnetic radiation received by the residents living near that substation. The measurement and the estimation were carried out in close proximity to different high powered equipment at four different substations near Brunei Darussalam. Initially, the measurement was performed using the TM-191 gaussmeter for all four 66/11kV substations. In the measurement process the highest magnetic field of 12.5mG was recorded near the lightning arrestor at Telisai substation and the lowest value of 0.1mG was recorded at Lamunin substation for the same equipment. Later on, the magnetic field strengths were estimated using single-layer and two-layer feed-forward artificial neural networks (ANN). The highest value of coefficient of determination was found to be 98% using single-layer ANN estimation while the coefficient of determination was found to be around 99% by using twolayer ANN estimation. These coefficients of determination values indicate that the artificial neural network can predict the magnetic field strength with high accuracy.
منابع مشابه
Evaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network
Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...
متن کاملA COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement conten...
متن کاملUse of artificial neural networks to estimate installation damage of nonwoven geotextiles
This paper presents a feed forward back-propagation neural network model to predict the retained tensile strength and design chart in order to estimation of the strength reduction factors of nonwoven geotextiles due to installation process. A database of 34 full-scale field tests were utilized to train, validate and test the developed neural network and regression model. The results show that t...
متن کاملThe Prediction of the Tensile Strength of Sandstones from their petrographical properties using regression analysis and artificial neural network
This study investigates the correlations among the tensile strength, mineral composition, and textural features of twenty-ninesandstones from Kouzestan province. The regression analyses as well as artificial neural network (ANN) are also applied to evaluatethe correlations. The results of simple regression analyses show no correlation between mineralogical features and tensile strength.However,...
متن کاملEVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS
In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016